Clinicopathological correlations and cellular dynamics in a murine model of oral carcinogenesis

Autores/as

DOI:

https://doi.org/10.5327/2525-5711.290

Palabras clave:

Mouth neoplasms, Carcinogenesis, Cell proliferation, Cell transformation, Neoplastic, Biomarkers

Resumen

Objective: To investigate clinicopathological correlations, cell proliferation, and immortalization during induced oral carcinogenesis. Methods: Forty-three Wistar rats were divided into a control group (n=10) or a 4-Nitroquinoline 1-oxide (4NQO) group (n=33). Control animals were euthanized after 20 weeks, and 4NQO-treated animals after 4 (n=10), 12 (n=10), or 20 weeks (n=13). Oral lesions were classified macroscopically and histologically, with Ki-67 and BMI-1 immunolabeling used to assess cell proliferation and immortalization. Results: Histological alterations, including hyperplasia/hyperkeratosis (n=4) and severe dysplasia (n=2), were observed in clinically normal mucosa. Leukoplakic lesions exhibited varying severity, ranging from hyperplasia/hyperkeratosis (n=3) to squamous cell carcinoma (SCC, n=2). Most SCCs appeared as ulcers (n=3) or nodules (n=4). Ki-67 expression increased progressively with histopathological changes, while BMI-1 levels rose significantly in later stages. A positive correlation was found between Ki-67 and BMI-1 (R=0.33, p=0.03). Conclusion: Cellular alterations often precede visible clinical lesions. Clinical appearances, particularly of leukoplakic lesions, frequently did not align with histopathological findings. Proliferation and immortalization were interconnected but occurred at distinct stages of carcinogenesis.

Citas

Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-63. https://doi.org/10.3322/caac.21834

Bravi F, Lee YCA, Hashibe M, Boffetta P, Conway DI, Ferraroni M, et al. Lessons learned from the INHANCE consortium: an overview of recent results on head and neck cancer. Oral Dis. 2021;27(1):73-93. https://doi.org/10.1111/odi.13502

Gates JC, Abouyared M, Shnayder Y, Farwell DG, Day A, Alawi F, et al. Clinical management update of oral leukoplakia: a review from the american head and neck society cancer prevention service. Head Neck. 2025;47(2):733-41. https://doi.org/10.1002/hed.28013

Odell E, Kujan O, Warnakulasuriya S, Sloan P. Oral epithelial dysplasia: recognition, grading and clinical significance. Oral Dis. 2021;27(8):1947-76. https://doi.org/10.1111/odi.13993

Zigmundo GCO, Schuch LF, Schmidt TR, Silveira FM, Martins MAT, Carrard VC, et al. 4-nitroquinoline-1-oxide (4NQO) induced oral carcinogenesis: a systematic literature review. Pathol Res Pract. 2022;236:153970. https://doi.org/10.1016/j.prp.2022.153970

Spuldaro TR, Wagner VP, Nör F, Gaio EJ, Squarize CH, Carrard VC, et al. Periodontal disease affects oral cancer progression in a surrogate animal model for tobacco exposure. Int J Oncol. 2022;60(6):77. https://doi.org/10.3892/ijo.2022.5367

Wagner VP, Spuldaro TR, Nör F, Gaio EJ, Castilho RM, Carrard VC, et al. Can propranolol act as a chemopreventive agent during oral carcinogenesis? An experimental animal study. Eur J Cancer Prev. 2021;30(4):315-21. https://doi.org/10.1097/CEJ.0000000000000626

Giudice FS, Pinto Jr DS, Nör JE, Squarize CH, Castilho RM. Inhibition of histone deacetylase impacts cancer stem cells and induces epithelial-mesenchyme transition of head and neck cancer. PLoS One. 2013;8(3):e58672. https://doi.org/10.1371/journal.pone.0058672

Kang MK, Kim RH, Kim SJ, Yip FK, Shin KH, Dimri GP, et al. Elevated Bmi-1 expression is associated with dysplastic cell transformation during oral carcinogenesis and is required for cancer cell replication and survival. Br J Cancer. 2007;96(1):126-33. https://doi.org/10.1038/sj.bjc.6603529

Gerdes J, Schwab U, Lemke H, Stein H. Production of a mouse monoclonal antibody reactive with a human nuclear antigen associated with cell proliferation. Int J Cancer. 1983;31(1):13-20. https://doi.org/10.1002/ijc.2910310104

Gonzalez-Moles MA, Ruiz-Avila I, Rodriguez-Archilla A, Martinez-Lara I. Suprabasal expression of Ki-67 antigen as a marker for the presence and severity of oral epithelial dysplasia. Head Neck. 2000;22(7):658-61. https://doi.org/10.1002/1097-0347(200010)22:7<658::aid-hed3>3.0.co;2-a

Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol. 2020;18(7):e3000410. https://doi.org/10.1371/journal.pbio.3000410

Häyry V, Mäkinen LK, Atula T, Sariola H, Mäkitie A, Leivo I, et al. Bmi-1 expression predicts prognosis in squamous cell carcinoma of the tongue. Br J Cancer. 2010;102(5):892-7. https://doi.org/10.1038/sj.bjc.6605544

Jing Y, Zhou Q, Zhu H, Zhang Y, Song Y, Zhang X, et al. Ki-67 is an independent prognostic marker for the recurrence and relapse of oral squamous cell carcinoma. Oncol Lett. 2019;17(1):974-80. https://doi.org/10.3892/ol.2018.9647

Carvalho JG, Noguti J, Silva VH, Dedivitis RA, Franco M, Ribeiro DA. Alkylation-induced genotoxicity as a predictor of DNA repair deficiency following experimental oral carcinogenesis. J Mol Histol. 2012;43(2):145-50. https://doi.org/10.1007/s10735-011-9388-5

Minicucci EM, Ribeiro DA, Silva GN, Pardini MIMC, Montovani JC, Salvadori DMF. The role of the TP53 gene during rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. Exp Toxicol Pathol. 2011;63(5):483-9. https://doi.org/10.1016/j.etp.2010.03.009

Dayan D, Hirshberg A, Kaplan I, Rotem N, Bodner L. Experimental tongue cancer in desalivated rats. Oral Oncol. 1997;33(2):105-9. https://doi.org/10.1016/s0964-1955(96)00048-6

Reibel J, Gale N, Hille J, Hunt JL, Lingen M, Muller S, et al. Oral potentially malignant disorders and oral epithelial dysplasia. In: World Health Organization. WHO classification of head and neck tumours. Lyon: IARC Press; 2017. p 112-3.

Slaughter DP, Southwick HW, Smejkal W. Field cancerization in oral stratified squamous epithelium; clinical implications of multicentric origin. Cancer. 1953;6(5):963-8. https://doi.org/10.1002/1097-0142(195309)6:5<963::aid-cncr2820060515>3.0.co;2-q

Rivera C, González-Arriagada WA, Loyola-Brambilla M, Almeida OP, Coletta RD, Venegas B. Clinicopathological and immunohistochemical evaluation of oral and oropharyngeal squamous cell carcinoma in Chilean population. Int J Clin Exp Pathol. 2014;7(9):5968-77. PMID: 25337241.

Nauta JM, Roodenburg JL, Nikkels PG, Witjes MJ, Vermey A. Comparison of epithelial dysplasia--the 4NQO rat palate model and human oral mucosa. Int J Oral Maxillofac Surg. 1995;24(1 Pt 1):53-8. https://doi.org/10.1016/s0901-5027(05)80857-4

Stransky N, Egloff AM, Tward AD, Kostic AD, Cibulskis K, Sivachenko A, et al. The mutational landscape of head and neck squamous cell carcinoma. Science. 2011;333(6046):1157-60. https://doi.org/10.1126/science.1208130

Franco EL, Kowalski LP, Oliveira BV, Curado MP, Pereira RN, Silva ME, et al. Risk factors for oral cancer in Brazil: a case-control study. Int J Cancer. 1989;43(6):992-1000. https://doi.org/10.1002/ijc.2910430607

Sequeira I, Rashid M, Tomás IM, Williams MJ, Graham TA, Adams DJ, et al. Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology. Nat Commun. 2020;11(1):5671. https://doi.org/10.1038/s41467-020-19401-9

Huang LY, Hsieh YP, Wang YY, Hwang DY, Jiang SS, Huang WT, et al. Single-cell analysis of different stages of oral cancer carcinogenesis in a mouse model. Int J Mol Sci. 2020;21(21):8171. https://doi.org/10.3390/ijms21218171

Melis M, Zhang T, Scognamiglio T, Gudas LJ. Mutations in long-lived epithelial stem cells and their clonal progeny in pre-malignant lesions and in oral squamous cell carcinoma. Carcinogenesis. 2020;41(11):1553-64. https://doi.org/10.1093/carcin/bgaa019

Warnakulasuriya S, Reibel J, Bouquot J, Dabelsteen E. Oral epithelial dysplasia classification systems: predictive value, utility, weaknesses and scope for improvement. J Oral Pathol Med. 2008;37(3):127-33. https://doi.org/10.1111/j.1600-0714.2007.00584.x

Kaplan I, Hochstadt T, Dayan D. PCNA in palate and tongue mucosal dysplastic lesions induced by topically applied 4NQO in desalivated rat. Med Oral. 2002;7(5):336-43. PMID: 12415217.

Silva RN, Ribeiro DA, Salvadori DMF, Marques MEA. Placental glutathione S-transferase correlates with cellular proliferation during rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. Exp Toxicol Pathol. 2007;59(1):61-8. https://doi.org/10.1016/j.etp.2007.02.010

Sumida T, Hamakawa H, Sogawa K, Bao Y, Zen H, Sugita A, et al. Telomerase activation and cell proliferation during 7,12-dimethylbenz[a]anthracene-induced hamster cheek pouch carcinogenesis. Mol Carcinog. 1999;25(3):164-8. https://doi.org/10.1002/(sici)1098-2744(199907)25:3<164::aid-mc2>3.0.co;2-5

Kim YW, Hur SY, Kim TE, Lee JM, Namkoong SE, Ki IK, et al. Protein kinase C modulates telomerase activity in human cervical cancer cells. Exp Mol Med. 2001;33(3):156-63. https://doi.org/10.1038/emm.2001.27

He Q, Liu Z, Zhao T, Zhao L, Zhou X, Wang A. Bmi1 drives stem-like properties and is associated with migration, invasion, and poor prognosis in tongue squamous cell carcinoma. Int J Biol Sci. 2015;11(1):1-10. https://doi.org/10.7150/ijbs.10405

Nankivell P, Dunn J, Langman M, Mehanna H. Feasibility of recruitment to an oral dysplasia trial in the United Kingdom. Head Neck Oncol. 2012;4:40. https://doi.org/10.1186/1758-3284-4-40

Publicado

2025-06-16

Cómo citar

1.
Bueno CC, Klein IP, Andrades ME, Meurer L, Castilho RM de, Klein CP, et al. Clinicopathological correlations and cellular dynamics in a murine model of oral carcinogenesis. J Oral Diagn [Internet]. 16 de junio de 2025 [citado 17 de junio de 2025];10. Disponible en: https://www.joraldiagnosis.com/revista/article/view/290

Número

Sección

Original Article